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Abstract. Dynamicxx andxy spin pair correlation functions for the isotropic spin- 1
2 XY chain are

calculated numerically for long open chains in the presence of a transverse (z) magnetic field at finite
temperature. From these data the first numerical results for the dynamic structure factors Sxx(κ, ω)
and Sxy(κ, ω) are obtained and compared with the known results for Szz(κ, ω). While Szz(κ, ω) is
restricted to certain regions in the (κ, ω)-plane Sxx(κ, ω) and Sxy(κ, ω) are not. Nevertheless, the
numerical results show that the latter structure factors are quite small outside the regions defined
by Szz(κ, ω) and moreover, that they may in many circumstances, especially at low temperature,
be approximately described by a small number of broadened excitation branches.

1. Introduction

Quantum spin chains have been a subject of intense theoretical interest for decades, because
the competition between ordering and thermal or quantum fluctuations generates a wealth
of interesting phenomena, both static and dynamic, which may be observed experimentally
in a variety of compounds made available by progress in preparation techniques. One of
the simplest quantum spin chains is the spin- 1

2 XY chain introduced in the pioneering paper
by Lieb et al [1], who pointed out the relation between the spin model and noninteracting
spinless fermions that makes many (but by no means all) properties of this model amenable
to analytical calculations. Many materials can be reasonably described by different special
cases of the spin- 1

2 XY chain, for example, Cs(H1−xDx)2PO4, PbH1−xDxPO4, PrCl3, CsCuCl3,
CsCu1−xMnxCl3, J -aggregates etc [2–10]. Dynamic spin correlations in these materials can
be measured by neutron scattering and magnetic resonance techniques. The calculation of
dynamic spin correlations can be nontrivial even in the simple case of the XY chain. The
time-dependent correlation function of the z components of two spins corresponds to a density
correlation function of noninteracting spinless fermions. This relation was exploited early
on [11] to calculate that correlation function. In contrast, the dynamic correlation functions of
x or y spin components map to complicated many-body correlation functions of the spinless
fermions. Consequently, analytical results on these correlation functions are restricted to
limiting or asymptotic cases, such as zero temperature (β = ∞) and large spatial separation
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between spins [12], infinite temperature (β = 0) [13–15], β = ∞, strong external field and
spins close to the boundary of a semi-infinite isotropic XY chain [16], and β = ∞ long-time
asymptotics for the isotropic XY chain without transverse field and the transverse Ising chain
at the critical field [17, 18]. More recent analytical approaches [19–23] to these correlation
functions have resulted in fairly simple expressions for the asymptotic correlations of the
isotropic XY chain at finite temperature [20] (see formulae (9), (10) below). In addition,
numerical approaches [24–27] have been employed to study the dynamic x and y spin pair
correlations.

It should be stressed, however, that no results at all are known for the complete wavevector
and frequency dependences of the dynamic structure factors corresponding to these correlations
in the isotropicXY chain at arbitrary temperature. In this paper we present the first such results.
This complements our recent study [27] of dynamic structure factors and susceptibilities of
the transverse Ising chain, the maximally anisotropic case of the general XY chain.

In section 2 we sketch the numerical method used to calculate time-dependent spin pair
correlation functions in long open-ended chains. The results are compared to available exact
or asymptotic results; in addition, the influence of finite-size effects is discussed. Section 3
contains the main results of our paper, namely the dynamic structure factors Sxx(κ, ω) and
Sxy(κ, ω) for various values of the transverse field and the temperature. We compare the new
results for Sxx(κ, ω) to the well known Szz(κ, ω) and point out similarities and differences. In
section 4 we discuss an experimental application reconsidering the theoretical prediction for
the temperature dependence of the spin–spin relaxation time in PrCl3 [7].

2. The method

Consider N spins one-half governed by the following Hamiltonian:

H = �
N∑
n=1

szn + J
N−1∑
n=1

(sxn s
x
n+1 + syn s

y

n+1) (1)

where � is the transverse field and J is the exchange interaction between neighbouring
sites. Using a Jordan–Wigner transformation [1] to map the spin raising and lowering
operators s±n = sxn ± isyn to Fermi operators c+

n , cn and then making a linear transformation
η+
k = ∑N

n=1 gknc
+
n one finds that Hamiltonian (1) becomes H = ∑N

k=1�k(η
+
k ηk − 1

2 ),{ηk, η+
q } = δkq , {ηk, ηq} = {η+

k , η
+
q } = 0 if the unknown coefficients of the linear transformation

gkn satisfy the set of equations
N∑
j=1

gkjAjs = �kgks
N∑
j=1

gkjgqj = δkq
N∑
k=1

gkjgkn = δjn (2)

where Aij = �δij + 1
2J (δj,i+1 + δj,i−1).

The spin operators can be represented in terms of auxiliary operators ϕ±
n , namely,

sxn = 1
2ϕ

+
1ϕ

−
1 . . . ϕ

+
n−1ϕ

−
n−1ϕ

+
n , syn = 1

2iϕ
+
1ϕ

−
1 . . . ϕ

+
n−1ϕ

−
n−1ϕ

−
n , szn = − 1

2ϕ
+
nϕ

−
n , which are linear

combinations of the operators η+
k , ηk , i.e. ϕ+

j = ∑N
k=1 gkj (η

+
k + ηk), ϕ

−
j = ∑N

k=1 gkj (η
+
k − ηk).

Therefore, the calculation of spin correlation functions reduces to exploiting the Wick–Bloch–
de Dominicis theorem. The required elementary contractions have the form

〈ϕ+
j (t)ϕ

+
m〉 = −〈ϕ−

j (t)ϕ
−
m〉 =

N∑
p=1

gpjgpm
cosh (i�pt − β�p

2 )

cosh β�p
2

〈ϕ+
j (t)ϕ

−
m〉 = −〈ϕ−

j (t)ϕ
+
m〉 =

N∑
p=1

gpjgpm
sinh (−i�pt + β�p

2 )

cosh β�p
2

.

(3)
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For example, the xx time-dependent spin correlation function can be finally expressed as the
Pfaffian of a 2(2j + n− 1)× 2(2j + n− 1) antisymmetric matrix

4〈sxj (t)sxj+n〉 = 〈ϕ+
1 (t)ϕ

−
1 (t) . . . ϕ

+
j−1(t)ϕ

−
j−1(t)ϕ

+
j (t)ϕ

+
1ϕ

−
1 . . . ϕ

+
j+n−1ϕ

−
j+n−1ϕ

+
j+n〉

= Pf




0 〈ϕ+
1ϕ

−
1 〉 〈ϕ+

1ϕ
+
2 〉 . . . 〈ϕ+

1 (t)ϕ
+
j+n〉

−〈ϕ+
1ϕ

−
1 〉 0 〈ϕ−

1 ϕ
+
2 〉 . . . 〈ϕ−

1 (t)ϕ
+
j+n〉

...
...

... . . .
...

−〈ϕ+
1 (t)ϕ

+
j+n〉 −〈ϕ−

1 (t)ϕ
+
j+n〉 −〈ϕ+

2 (t)ϕ
+
j+n〉 . . . 0


 .

(4)

Similarly

4i〈sxj (t)syj+n〉 = 〈ϕ+
1 (t)ϕ

−
1 (t) . . . ϕ

+
j−1(t)ϕ

−
j−1(t)ϕ

+
j (t)ϕ

+
1ϕ

−
1 . . . ϕ

+
j+n−1ϕ

−
j+n−1ϕ

−
j+n〉

= Pf




0 〈ϕ+
1ϕ

−
1 〉 〈ϕ+

1ϕ
+
2 〉 . . . 〈ϕ+

1 (t)ϕ
−
j+n〉

−〈ϕ+
1ϕ

−
1 〉 0 〈ϕ−

1 ϕ
+
2 〉 . . . 〈ϕ−

1 (t)ϕ
−
j+n〉

...
...

... . . .
...

−〈ϕ+
1 (t)ϕ

−
j+n〉 −〈ϕ−

1 (t)ϕ
−
j+n〉 −〈ϕ+

2 (t)ϕ
−
j+n〉 . . . 0


 .

(5)

Usually, to discuss the dynamic properties of a spin system one calculates the dynamic
structure factor

Sαβ(κ, ω) =
N∑
n=1

eiκn
∫ ∞

−∞
dt e−ε|t |eiωt 〈sαj (t)sβj+n〉 ε → +0 (6)

which is related to the corresponding time-dependent spin correlation functions. Another
widely used quantity, the dynamic susceptibility χαβ(κ, ω), can be obtained from the
dynamic structure factor (6). (Im χαβ(κ, ω) comes from Sαβ(κ, ω) by the fluctuation–
dissipation theorem, whereas Re χαβ(κ, ω) comes from Im χαβ(κ, ω) by the Kramers–Kronig
transformation (see [28]).) The dynamic properties connected with the zz time-dependent
correlation functions are well known [11, 29–33]. Since a π

2 rotation of all spins about the
z-axis commutes with Hamiltonian (1) one finds the identities 〈syj (t)syj+n〉 = 〈sxj (t)sxj+n〉,
〈syj (t)sxj+n〉 = −〈sxj (t)syj+n〉. The other correlation functions not mentioned above vanish,
and hence it remains to examine the xx and xy time-dependent correlation functions.
Alternatively we may examine the correlation functions 〈s+

j (t)s
−
j+n〉 and 〈s−j (t)s+

j+n〉 since

〈sxj (t)sxj+n〉 = 1
4 (〈s+

j (t)s
−
j+n〉 + 〈s−j (t)s+

j+n〉) and 〈sxj (t)syj+n〉 = i
4 (〈s+

j (t)s
−
j+n〉 − 〈s−j (t)s+

j+n〉).
Due to the translation and reflection invariances that hold for infinite system equation (6)
yields

Sxx(κ, ω) =
∑

n=0,±1,...

eiκn2Re

[ ∫ ∞

0
dt ei(ω+iε)t 〈sxj (t)sxj+n〉

]

Sxy(κ, ω) =
∑

n=0,±1,...

eiκn2iIm

[ ∫ ∞

0
dt ei(ω+iε)t 〈sxj (t)syj+n〉

]
.

(7)

This form of the quantities of interest is most suitable for further numerical calculation. Further
details on the numerical approach can be found in [27].

In our numerical calculations we considered chains of N = 400 spins with J = −1 and
the values of transverse field � = 0, . . . , 2 at the inverse temperatures β = 100, 20, 5, . . . , 0.
We calculated 〈sxj (t)sxj+n〉 and 〈sxj (t)syj+n〉 with j = 41, 51, 61 and n up to 50 (and up to
100 at β = 20) evaluating the corresponding Pfaffians (4), (5) constructed from elementary
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Figure 1. Time-dependence of the autocorrelation function 〈sxj (t)sxj 〉 obtained numerically
(j = 51) at infinite temperature (β = 0) for different values of transverse field� = 2, 1 (downward
and upward triangles), � = 0.5 (open circles), � = 0.1 (squares), and � = 0 (filled circles).
Curves represent the exact result (8).

contractions (3), (2) for the times up to tc = 250. Finally, we summed over n and did the
integral over t with ε = 0.001 (except the case� = 2, β = 5 for which ε = 0.1). To estimate
the accuracy of the results obtained many additional calculations similar to those described in
detail in [27] were performed. They permitted us to assess the finiteN and j effects, the effects
of termination of the sum over n and of the finite values of tc and ε. The results presented
below for Sxx(κ, ω) and Sxy(κ, ω) pertain to the thermodynamic limit.

Figure 1 shows the time dependence of the autocorrelation function at infinite temperature
for some values of the transverse field obtained numerically (symbols) in comparison with the
exact analytical result [13, 14] (curves),

4〈sxj (t)sxj+n〉 = δn,0 cos(�t)e− 1
4 J

2t2 (β = 0). (8)

The figure clearly demonstrates excellent agreement between the analytical and numerical
results.

Figure 2 shows numerical results for Re 〈sxj (t)sxj 〉 at finite temperatures for � = 0, along
with the asymptotic result [20] valid for long times:

〈s+
j (t)s

−
j+n〉 ∼

{
ef (n,0) n

J t
> 1

t2(ν
2
−+ν2

+)ef (n,t) n
J t
< 1

(9)

where

f (n, t) = 1

2π

∫ π

−π
dp|n + J t sinp| ln

∣∣∣∣tanh
β(�− J cosp)

2

∣∣∣∣
ν± = 1

2π
ln

∣∣∣∣∣∣tanh
β

[
�∓ J

√
1 − ( n

J t
)2

]
2

∣∣∣∣∣∣ .
(10)

From figure 2 one can see that the numerical calculations are in agreement with the analytical
predictions (9), (10): for finite temperatures 〈sxj (t)sxj 〉 decays exponentially (the logarithms of
the asymptotics have the same slopes as the logarithms of the computed correlation functions);
with increasing temperature one observes Gaussian decay over a time interval of increasing
length (see the data for β = 0.000 01).
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Figure 2. Time dependence of the autocorrelation function 〈sxj (t)sxj 〉obtained numerically (j = 51)
for � = 0 and various temperatures, on a logarithmic scale. Downward and upward triangles,
circles, and squares correspond to the numerical results forβ = 5, 1, 0.1, and 0.000 01, respectively.
The exact analytical result for β = 0 (8) is depicted by a solid curve. Dot-dashed, short-dashed,
long-dashed, and dotted curves correspond to the asymptotic result (9), (10) for β = 5, 1, 0.1, and
0.000 01, respectively. Evidently only the slopes of those asymptotics should be compared with the
numerical results. For β = 0.000 01 the correlation function does not reach its asymptotic regime
within the time range displayed in the figure.

In figure 3 we plotted the numerical result for the low-temperature Fourier transform
(β = 100) of the xx autocorrelation function *xx0 (ω) = ∫ ∞

−∞ dt e−ε|t |eiωt 〈sxj (t)sxj 〉, ε → +0
which was obtained at � = 0 and β = ∞ in [18] (figure 4 of that paper). To investigate
the possible influence of finite-size and boundary effects we studied the time dependence of
〈sxj (t)sxj 〉 at � = 0, β = 100 up to t = 300, (i) for j = N

2 + 1 in chains of varying length N ,
and (ii) for different j in a N = 400 chain. We generally observed a rapid, almost step-like
decrease in 〈sxj (t)sxj 〉 at t � 2j , which is often preceded by an increase echoing the initial
behaviour of 〈sxj (t)sxj 〉. As both of these features shift with j they are clearly identifiable as
finite-size effects. The wiggles in the low-frequency region of *xx0 (ω) (figure 3) originate
from the step at t � 200 in 〈sx101(t)s

x
101〉 of the N = 400 chain. Of course these wiggles may

be suppressed by increasing the damping factor ε in the Fourier transform, but that would also
blur the sharp spectral features at ω = 0, 1, and 2.

Typical time dependences of spin correlations 〈sxj (t)sxj+n〉 at finite distance are shown
in figure 4. This figure also illustrates the finite-size effects mentioned above, and their
temperature dependence. Shown are data for Re 〈sxj (t)sxj+n〉 for n = 50, j = 41, 42, and
51 at� = 0 and β = 20 (figure 4(a)) and β = 100 (figure 4(b)). For β = 20 all data coincide
within the line thickness, so that translational invariance is fulfilled within the precision of the
figure. However, at β = 100 translational invariance is definitely broken; the time at which
the ‘step’ occurs shifts by +t � 20 as j increases by 10. This demonstrates that finite-size
effects become more dangerous at lower temperatures. Figure 4 also demonstrates the generic
behaviour of 〈sxj (t)sxj+n〉 described by the asymptotic formulae (9), (10) which we have verified
by comparison with numerical data for various values of the applied field �: 〈sxj (t)sxj+n〉 is
a (temperature-dependent) constant up to times t � n and then decays exponentially with
superimposed oscillations.
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Figure 3. Fourier transform of the autocorrelation function*xx0 (ω) in the absence of the transverse
field at low temperature β = 100 computed with j = 101, tc = 300, ε = 0.001.

0 50 100 150 200 250 300

0,000

0,005

0,010

0,015

0,020

0,025

0,030

R
e<

sx j(t
)s

x j+
50

>

tt
0 30 60 90 120 150

0,000

0,001

0,002

R
e<

sx j(t
)s

x j+
50

>

(a) (b)

Figure 4. Dependence of Re〈sxj (t)sxj+50〉 (N = 400) on time at the low temperatures β = 20
(a) and β = 100 (b) for� = 0 with j = 41 (solid curves), j = 42 (dashed curves), j = 51 (dotted
curves).

3. The dynamic structure factor

This section contains our main results. The data for the dynamic structure factors Sxx(κ, ω) and
Sxy(κ, ω)which we present in figures 5–10 are the first finite-temperature and finite-field results
available for these quantities, apart from zero-field results from a complete diagonalization of
short (N � 16) closed chains [34]. For comparison of the new results for the xx and xy
dynamics with the known results concerning the zz dynamics we present in figure 11 the low-
temperature dependence of the zz dynamic structure factor on the wavevector and frequency
for several values of the transverse field.
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It should be noted that our results apply to ferromagnetic (J < 0) as well as
antiferromagnetic (J > 0) coupling, since 〈sxj (t)sxj+n〉 and 〈sxj (t)syj+n〉 for J > 0 differ from
the same correlation functions for J < 0 only by the factor (−1)n = e±iπn. Therefore, it
follows from equation (6) that Sxx(π − κ, ω) and Sxy(π − κ, ω) for the antiferromagnet are
equal to Sxx(κ, ω) and Sxy(κ, ω) for the ferromagnet, respectively, and hence it is sufficient to
study only one case, e.g. that of ferromagnetic coupling.

Let us now discuss the numerical results, starting with the dynamic structure factor
Sxx(κ, ω) at low temperature, β = 20 (figure 5). At small values of the wavevector (e.g.
κ = π

8 ) the frequency dependence of Sxx(κ, ω) has a one-peak structure for all values of
�. For larger values of κ the frequency dependence of Sxx(κ, ω) becomes more complicated
essentially depending on the value of the transverse field. With increasing � one-peak (for
κ = π

4 ) or two-peak (for κ = π
2 , κ = 2π

3 , κ = 3π
4 , κ = π ) frequency profiles transform into

two-peak or three-peak (e.g. for κ = 2π
3 ) profiles and finally back into one-peak profiles. From

figure 5 one can see that with increasing κ the frequency profile of Sxx(κ, ω) transforms from
one-peak type to two-peak type at � = 0.001, 0.9 or from one-peak type through two-peak
type to three-peak type and then to two-peak type at� = 0.1, 0.5, 0.75. At� = 1 (or larger)
the frequency profiles of Sxx(κ, ω) have one-peak structure for all κ .

� = 1 is the critical field strength above which the ground state of the chain is
ferromagnetically saturated; consequently there are no qualitative changes in the excitation
spectrum and in the dynamic structure factors for� > 1. In contrast, the ground state changes
with� for� < 1. This is evident in the changes in the low-lying excitations visible in figure 5,
to be discussed shortly.

Figures 6–9 illustrate the temperature dependence of Sxx(κ, ω). At � = 0.1, 0.5 and
β = 5 one can still observe a transformation in the ω-dependence of Sxx(κ, ω) from one-peak
profiles to ‘two-peak’ profiles as κ increases; at β = 1 one finds only one peak that spreads and
slightly moves towards higher frequencies with increasing κ; at β = 0.1 there is only one broad
κ-independent maximum in the frequency dependence of Sxx(κ, ω). For larger values of the
transverse field � = 1, 2, Sxx(κ, ω) always exhibits a one-peak frequency profile that moves
towards higher frequencies with increasing κ at β = 5, 1, and does not depend on κ at the
high temperature β = 0.1. The single broad κ-independent Gaussian ridge at β = 0.1 in any
of figures 6–9 represents the Fourier transform of equation (8). Note that the κ-independence
of Sxx(κ, ω) is a very general feature, as 〈sxj (t)sxj+n〉, n �= 0 vanishes in the high-temperature

limit for completely arbitrary (e.g. inhomogeneous or random) spin- 1
2 XY chains. However,

for some of the few known cases (besides the one treated here) in which β = 0 correlations
may be calculated explicitly (see [15] for several results and a review of previous work) up to
three Gaussian peaks (modulated by periodic functions) may show up.

Figure 10 shows iSxy(κ, ω) at low temperature (β = 20) for various values of �. For
� = 0, iSxy(κ, ω) vanishes due to spin-flip symmetry. In contrast to Sxx(κ, ω), iSxy(κ, ω)
need not be positive, and for small � values it displays an interesting pattern of ridges and
valleys. For large � values iSxy(κ, ω) resembles Sxx(κ, ω) more and more closely.

It is useful to compare the new low-temperature results for Sxx(κ, ω) and Sxy(κ, ω)
(figures 5, 10) with those long known for Szz(κ, ω) (figure 11). Szz(κ, ω) originates from
two excitation continua [31, 35, 36] whose boundaries are visible in figure 11. The continua
represent two-particle excitations of the Jordan–Wigner fermions. As the single-fermion
dispersion relation is bounded the continua have sharp upper frequency cutoffs at which
Szz(κ, ω) may diverge. At β = ∞ there is also a sharp lower frequency cutoff which
touches the line ω = 0 at κ = 0 and a second field-dependent ‘soft-mode’ wavenumber,
κc = 2 arccos�. With increasing temperature the lower frequency cutoff becomes smeared
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Figure 5. Sxx(κ, ω) for � = 0.001 (a), � = 0.1 (b), � = 0.5 (c), � = 0.75 (d), � = 0.9 (e),
� = 1 (f ) at the temperature β = 20.
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Figure 5. (Continued)

out and finally disappears. The transverse field � corresponds to the chemical potential of
the Jordan–Wigner fermions which becomes irrelevant at infinite temperature. Thus Szz(κ, ω)
becomes �-independent at β = 0, but still depends on κ . In contrast (as discussed above)
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Figure 6. Temperature dependence of Sxx(κ, ω) for � = 0.1: β = 0.1 (a), β = 1 (b), β = 5 (c).

Sxx(κ, ω) becomes κ-independent at β = 0 but still depends on�. In comparison to Szz(κ, ω),
much less is known about the structure factors Sxx(κ, ω) and iSxy(κ, ω), which are many-
particle quantities in terms of the Jordan–Wigner fermions, as is obvious from the discussion in
section 2. Therefore the frequency range of Sxx(κ, ω) and iSxy(κ, ω) is not a priori restricted
and spectral weight might be expected throughout the (κ, ω) plane. However, as already
observed for the spin- 1

2 XXZ chain [34], Sxx(κ, ω) does not meet these expectations; it is
rather small (but not zero) outside the excitation continua shown in figure 11, and it shows
washed-out excitation branches roughly following the boundaries of the excitation continua.
In contrast, Szz(κ, ω) is (apart from boundary singularities) almost structureless inside the
excitation continua and strictly zero outside. These findings are illustrated, for example, by
figures 5(c), 10(c), and 11(c) (for � = 0.5). Comparing, for example, figures 5(a), (b) and
11(a), (b) one finds that a nonzero transverse field� generates an additional excitation branch
in Sxx(κ, ω) which closely follows the lower frequency cutoff for Szz(κ, ω) whose soft-mode
behaviour was discussed in [35]. Figures 10 and 5 show that in general iSxy(κ, ω) and Sxx(κ, ω)
have many spectral features in common, however, the physical meaning of the former quantity
is less obvious.

It is interesting to compare our numerical results with the analytical predictions of
the bosonization method which exploits the bosonic nature of low-lying excitations in a
weakly interacting one-dimensional Fermi system. The fermionic dispersion relation can
be linearized about the Fermi momentum and the continuum limit is performed as only long-
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Figure 7. The same as in figure 6 for � = 0.5.

wavelength excitations are considered. For the spin- 1
2 XXZ chain (as mapped to interacting

fermions by a Jordan–Wigner transformation) the pioneering work was done by Luther and
Peschel [37] for β = ∞; Schulz [38] generalized their work to finite temperature and
higher spin quantum numbers. As a continuum theory focused on low-energy excitations,
bosonization fails to describe high-frequency phenomena (e.g. cutoffs) in dynamic structure
factors which are related to the boundedness of lattice fermion spectra. This was observed [34],
for example, when finite-temperature bosonization results for the dynamic structure factor
of a spin- 1

2 Heisenberg antiferromagnet were compared with numerical data from complete
diagonalization of 16-spin chains.

The β = ∞ structure factors of the isotropicXY chain (with no external field) as obtained
by bosonization are

Sµµ(κ, ω) ∼ θ(ω − |vκ|)
[ω2 − (vκ)2]1− ηµ

2

(µ = x, z) (11)

where the spinon velocity v = J equals the Fermi velocity of the Jordan–Wigner fermions.
The singularity exponents ηx = 1

ηz
= 1

2 describe correctly the known singularities at the
lower continuum boundary. However, due to linearization of the fermion dispersion, the lower
continuum boundary εl(κ) = J sin κ is only approximated well for κ close to 0 or π as follows
from (11). A magnetic field in the z direction corresponds to a chemical potential for the
Jordan–Wigner fermions. This does not cause any qualitative changes in the bosonization
calculation; only the values of the Fermi momentum and Fermi velocity are changed. The
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Figure 8. The same as in figure 6 for � = 1.

resulting changes in the continuum boundaries (for Szz(κ, ω)) were discussed by Taylor and
Müller [31] and are illustrated in figure 11.

The divergence of Sxx(κ, ω) (smoothed by numerical effects) at the lower continuum
boundary is clearly visible in our low-temperature data, along with high-frequency singularities
not accounted for by bosonization. The magnetic-field induced soft mode at κc shows up as a
sharp V-shaped ridge in Sxx(κ, ω). At higher temperature bosonization predicts a softening of
the continuum boundary singularities in accordance with our numerical data.

The excitations of the system can be discussed in terms of the retarded temperature
double-time Green function [28] G−

j,j+n(t) = −iθ(t)〈[s−j (t), s+
j+n]〉. Its Fourier transform

with respect to time t and distance n G−
κ (ω) = ∑N

n=1 eiκn
∫ ∞
−∞ dt ei(ω+iε)tG−

j,j+n(t), ε → +0
is equal to the dynamic susceptibility χ−+(κ, ω). From the fluctuation–dissipation theorem
in the limit of low temperatures S−+(κ, ω) ∼ −Im χ−+(κ, ω), ω �= 0. Assuming s+

n , s−n to
obey Bose commutation rules one immediately finds for the spin model defined by (1) that
χ−+(κ, ω) = 1/(ω−�− J cos κ + iε) or that S−+(κ, ω) ∼ δ(ω−�κ),�κ = �+ J cos κ , i.e.
the dynamic structure factor for given κ shows a single peak corresponding to a magnon branch
with dispersion�κ . This result coincides with the exact one [39] obtained for β = ∞,� > J ,
but it is qualitatively wrong for � < J as our numerical results demonstrate: they often show
multiple peaks, continua, etc. Figures 5 and 10 show that in many situations the dominant
contributions to the dynamic structure factor S−+(κ, ω) can be described by a small number of
broadened excitation branches. However, the kind of single-mode approximation described
above will in most cases be inappropriate for deriving the magnetic excitation spectrum from
scattering experiments.
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Figure 9. The same as in figure 6 for � = 2.

4. An experimental application

As an application of our results let us discuss the temperature dependence of the spin–spin
relaxation time in PrCl3 which was not known heretofore due to lack of information about the
xx time-dependent correlation functions for the spin- 1

2 XY chain [7]. The Pr–Pr interaction in
this compound (as derived from measurements of static quantities) can be reasonably described
by the model (1) with J/kB = 2.85 K and � = 0, and the spin–spin relaxation time T2 is
related [7] to the xx time-dependent autocorrelation function

1

T2
∼

∫ ∞

−∞
dt〈sxj (t)sxj 〉. (12)

The result of our calculation is shown in figure 12. T2 is an increasing function of
temperature and crosses over to a constant at about 1 K. The plateau in the temperature
dependence of T2 (12) can be understood from our results presented above. For the time
range during which 〈sxj (t)sxj 〉 contributes appreciably to the integral (12), it does not depend
on temperature for sufficiently high temperatures. This can be seen in figure 2: the data
for β � 1 coincide in the region where 〈sxj (t)sxj 〉 has non-negligible values; the differences
between high and infinite temperatures occur only at long times, where 〈sxj (t)sxj 〉 is already
very small.

Qualitatively, our result for the temperature dependence is similar to that of an earlier
short-chain calculation [7] and to the behaviour observed experimentally [7]; however, there are
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Figure 10. iSxy(κ, ω) for � = 0.1 (a), � = 0.25 (b), � = 0.5 (c), � = 0.75 (d), � = 0.9 (e),
� = 1 (f ) at β = 20. In the regions denoted by minuses iSxy(κ, ω) < 0.
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Figure 10. (Continued)

significant discrepancies in the value of the crossover temperature. The short-chain calculation
yields a crossover at less than 2.5 K; additional approximations (artificial coarse-graining in
ω) were necessary in that calculation to extrapolate from N = 10, 12 to N = ∞. The
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Figure 11. Greyscale plots of Szz(κ, ω) for � = 0.001 (a), � = 0.1 (b), � = 0.5 (c), � = 0.75
(d), � = 0.9 (e), � = 1 (f ) at β = 20.
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Figure 12. Temperature dependence of the spin–spin relaxation time (12): long-chain calculation
result. The squares denote the numerical results; the connecting curve is a guide to the eye.

experimental crossover temperature of 6 K is still much higher. This indicates (as already
suspected earlier [7]) that while the static thermal behaviour of PrCl3 may be describable by
an isotropic XY chain with J/kB = 2.85 K, the dynamics is probably more complicated.

To summarize, we have computed the xx and xy time-dependent spin correlation functions
for the spin- 1

2 isotropicXY chain in a transverse field and the corresponding dynamic structure
factors. Our investigations have indicated excitations that govern the dynamic structure factors
in the spin- 1

2 isotropic XY chain in a transverse field. Our results should be useful for
understanding dynamic experiments on quasi-one-dimensional spin- 1

2 XY -like compounds.
As an obviously interesting extension of the present study, a chain with regularly alternating
couplings may be studied. Systems of this kind are discussed in adiabatic treatments of the
spin–Peierls transition as well as in modelling structurally dimerized spin chain compounds
and have recently been discussed intensively, see [40] and references cited therein. Work in
this direction is in progress.
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